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It has recently been shown that amplified signal response is possible in scale-free networks of two-state
signaling devices �J. A. Acebron et al., Phys. Rev. Lett. 99, 128701 �2007��. In the analysis of dynamics in
networks, much emphasis is put on the hub, and consequently the applicability thereof is limited to a region of
small coupling strength. In this paper, we develop a one-body theory which predicts �1� the behavior of the
gain in the whole coupling strength region, and �2� the degree of the unit, which shows maximum response, as
a function of the coupling strength. In order to achieve good agreement with numerical experiments effects of
finite system size are taken into account when the coupling strength becomes very small and the degree kL of
the maximum response unit, predicted by our theory, becomes larger than the maximum degree kmax available
to a concrete finite network.
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I. INTRODUCTION

A bistable unit has long been employed mainly to de-
scribe physical and chemical systems/processes, such as
glasses �1� and chemical reactions �2�. However, it is now
gathering considerable interest as an information processing
unit and is used as a paradigm of stochastic resonance �SR�,
which was first formulated for a system with double well
potential �3� and represents an interesting phenomenon, in
which detectability of a weak input signal is enhanced by the
assistance of proper amount of noise �4�.

Much effort has been naturally invested to study effects of
coupling many bistable units on the detectability �4�. One
new aspect here is that we have an extra parameter of cou-
pling strength and the detectability turned out to achieve
maximum at a finite coupling strength in some networks with
array �5�, and scale-free �6� connections. Thus, we may have
a kind of double resonance with respect to noise strength �as
in SR� and the coupling strength �5,6�.

Recently, Acebron et al. �7� investigated a scale-free �SF�
network with a double well unit put on each node, from a
viewpoint of signal detection via complex network topology,
which may be a kind of sources of diversity �8�. The gain, G,
which quantifies detectability of the input sinusoidal signal,
was shown by computer simulations to have a plateau in
some range of the coupling strength �. Theoretically they
analyzed collective dynamics in the highly heterogeneous
network by proposing a simplified starlike model, in which a
hub unit �i.e., star� was connected with many other units �i.e.,
leaves� isolated from all other units.

Although they could show that the existence of the hub
unit played the decisive role to make the gain large, their
theory is limited to a region of small coupling strength. As a
result, properties of the scale-free network seems to be not
fully elucidated, and the roles of network structures such as
the power-law degree distribution in the scale-free network
�8� remains to be clarified. In this paper, we develop a one-
body theory, which enables us to give analytic expressions
not only for the gain G but also for the degree kL of the unit
with the maximum response to the input signal in terms of
the coupling strength �.

When � approaches zero, the degree kL with the maxi-
mum response goes to infinity and we have taken into ac-
count effects of finite system size to explain our simulation
results. On the other hand as � becomes large, the system
shows full synchronization to a input periodic signal, which
is also analyzed based on a one-body theory.

The paper is organized as follows. Section II gives the
one-body theory and its approximation conditions. Section
III discusses the gain for the whole coupling range and
shows its consistence with numerical simulations. Finally,
Sec. IV includes the discussion and the conclusions.

II. ONE-BODY THEORY

The model we study is described by �7�

ẋi = − dV�xi�/dxi + A sin��t� + ��
j=1

N

Mij�xj − xi� , �1�

where xi�i=1, . . ,N� denotes the response of the unit i to the
sinusoidal input signal and ���0� is the coupling strength.
We will choose V�x� as a double well potential, which takes
the form �6�

V�x� = �x − 1�2�x + 1�2. �2�

M is the adjacency matrix. That is, Mij =1 if there is coupling
between the unit i and j and Mij =0 otherwise. We will
mainly consider a scale-free network with the average degree
�k�=6, which is produced by a Barabasi-Albert algorithm
�9�. The scale-free network has the degree distribution

P�k� � k−3. �3�

Under the action of the sinusoidal signal, each oscillator xi
performs a periodic motion in a stationary state with the
amplitude defined by ai��maxt xi�t�−mint xi�t�� /2. The gain
G, which measures efficiency for information processing, is
defined by �7�
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G � max
i

ai/A � aL/A , �4�

where the unit L denotes the one with the maximum ampli-
tude. As for the initial condition 	xi�t=0�
�i=1,2 , . . ,N� we
will follow �7�, in which xi�t=0� is chosen to be either 1 or
−1 with the probability 1/2.

Let us first introduce the concept of a fifty-fifty unit. If a
unit i belongs to the fifty-fifty unit, this means that about
half of its neighbors �ki /2� are oscillating in the left well
�x�−1� and the other half in the right well �x�1� in a
stationary state, and we express this as i�F. The key obser-
vation, which enabled us to reduce Eq. �1� to a one-body
problem for G, is that the unit L, which realizes maximum
response aL, belongs to the fifty-fifty unit, i.e., L�F. This is
first occurred to us through data analysis of our numerical
experiments and later turned out to be reasonable.

If i�F and is located on the left well at some time, the
unit i feels attractive force from ki /2 units in the right well
with nearly no force from ki /2 units in the left well. If the
force happens to be strong enough to pull the unit i to the
right well over the potential barrier of V�x�, it moves to the
right well and a similar event occurs to bring back the unit i
to the left well. This is a mechanism for a unit to perform
large amplitude oscillation around the center x=0.

This is easily formulated with use of Eq. �1� as follows: If
we choose arbitrarily a unit i�F, to be called f for conve-
nience, we can write down Eq. �1� as

ẋf = − 4xf
3 + �4 − �kf�xf + A sin��t� � − dVef f�xf�/dxf

+ A sin��t� , �5�

where the assumption � jMf jxj �� jMf jxf =kfxf is used. In a
stationary state xf�t� performs a periodic oscillation with the
period �p�2� /� and we denote the solution as xf ,p�t�. As
will be shown below its amplitude shows interesting bifur-
cation as a function of �kf with the critical point at �kf

c

=1.721.
In Fig. 1 we show four trajectories xf ,p�t� for �kf =1, 1.72,

1.722, and 4, which are obtained by solving Eq. �5� numeri-
cally by a Runge-Kutta method �10�. When �kf is small, Fig.
1�a�, we have two solutions, one oscillating around 1 and the
other around −1 �not shown�.When �kf is large, Fig. 1�d�, the
periodic oscillation is around x=0. At the subcritical point,
Fig. 1�b�, the unit performs strongly nonlinear oscillation in
the regions 1�x�0 and 0�x�−1 �not shown�. On the
other hand the unit oscillates around x=0 with large ampli-
tude at the postcritical point, Fig. 1�c�, thus showing a bifur-
cation of oscillation amplitude at �kf

c=1.721.
In Fig. 2, we plot Z��kf��maxt xf�t�−mint xf�t��Xf ,max

−Xf ,min as a function of �kf �the solid curve�. Around �kf
c

�1.721 we observe a jump of Z��kf�.
As preparation for our analytic theory to be developed

later, let us study this bifurcation graphically from a little
different viewpoint, which results in confirmation of the bi-
furcation picture obtained above from Fig. 1. For the purpose
we introduce Amax �Amin� as the value of A sin��t�, when
xf ,p�t� takes its maximum Xf ,max�minimum Xf ,min�, which can
be read off easily from Fig. 1.

The pair �Xf ,max ,Amax� is easily seen to satisfy the follow-
ing algebraic equation,

g�Xf ,max� � − dVef f�Xf ,max�/dXf ,max = − Amax, �6�

with the same equation holding for the pair �Xf ,min ,Amin�
also.

In Fig. 3 we plot Amax and Amin as a function of �kf. At
this point we give two remarks on the periodic solution
xf ,p�t�, which are useful for discussing the bifurcation. The
first one is that if xf ,p�t� is a periodic solution of Eq. �5� with
Amax and Amin, then xf ,p� �t��−xf ,p�t+� /�� is also a solution
of Eq. �5� with Amax� =−Amin and Amin� =−Amax. The second
one is that if g�X�=B, with B a constant, has three solutions
X1	X2	X3, then g�X�=−B has three solutions −X3	−X2
	−X1. When there is only one real solution X1 to g�X�=B,
then g�X�=−B has −X1 as its solution.

FIG. 1. �Color online� Periodic solution xf ,p�t� of Eq. �5� for �a�
�kf =1, �b� 1.72, �c� 1.722, and �d� 4 for A=0.8 and �=0.5 �solid
curves�. The periodic external force A sin��t� is also shown as
dashed curves. The vertical dotted lines represent the points where
xf ,p�t� become maximum and minimum. In the region I �II� xf ,p�t�
increases �decreases�.

FIG. 2. �Color online� Z versus �kf for A=0.8 and �=0.5,
where the solid curve comes from the periodic �numerical� solution
xf ,p to Eq. �5� and the dashed curve is from the solution of Eq. �8�,
which results from Eq. �5� after introducing additional approxima-
tion Eq. �7�.
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In order to see how this behavior of Amax,min is related to
the bifurcation presented in Fig. 2 �solid curve�, we plot in
Fig. 4 y=g�X� and y=−Amax,min for �kf =1, 1.72, 1.722, and
4. The intersections between the curve y=g�X� and the
straight lines y=−Amax and y=−Amin show the �possible�
boundaries of oscillations and from Fig. 1 we show the am-
plitude of stationary oscillation for A=0.8 by bold lines. This
precisely reproduces the solid curve in Fig. 2 as is discussed
below.

When �kf is small �Fig. 4�a��, Amax�−Amin and from the
first remark above we have Amax� =Amax and Amin� =Amin. Thus
we have two small amplitude oscillations, one around x=1
and the other around x=−1 �not shown�, which is nearly
symmetric with respect to y axis in Fig. 4�a�.

As �kf approaches the critical point from below, Amin in-
creases rapidly as shown in the inset of Fig. 3. For example,
at �kf =1.72 �Fig. 4�b��, Amax=0.798 and Amin=−0.136. Two
curves y=−Amax=−0.798 and y=g�x� has one intersection
and this gives one large nonlinear oscillation corresponding
to Fig. 1�b�. Of course we have another solution with Amax�
=−Amin=0.136 and Amin� =−Amax=−0.796, which gives large
amplitude oscillatory solution in the region −1	xf ,p�t�	0
�not shown�. This is symmetric, from the second remark
above, with respect to y axis in Fig. 4�b�.

At the critical point where Amax=Amin�Ac, we numeri-
cally confirmed that two separate oscillations in the positive
and negative x regions merge to give rise to large amplitude
oscillation in the region −1	x	1. Since Amax� =Amin� =−Ac,
we have here still two oscillations as remarked before. As
�kf increases a little beyond the critical point, Amax decreases
rapidly �see the inset of Fig. 3�. For example, at �kf =1.722
�Fig. 4�c��, we have Amax=−0.243 and Amin=0.454 and see
that the unit, confined in the region 1�x�0 in the precriti-
cal situation, now moves over the range −1	x	1 in this
postcritical situation.

When �kf further increase, Amax and Amin approach A and
−A, respectively and the amplitude decreases as shown in
Fig. 2.

Now we proceed to our theory. First we note that as long
as we rely on the numerical Runge-Kutta solution of Eq. �5�
to know Amax ,Amin in Eq. �6�, we cannot obtain an analytic
result for G, Eq. �4�. To circumvent this difficulty, we intro-
duce a second approximation, in which we neglect �kf de-
pendence of Amax and Amin and consider

Amax = A, Amin = − A , �7�

in addition to the fifty-fifty approximation. As mentioned
above, from Fig. 3, we see that Eq. �7� is valid for �kf �0
except for a small �kf region around �kf

c. In view of the
merit of enabling us to obtain an analytic expression for G,
we now proceed to discuss the results of Eq. �7�.

From Eqs. �5� and �7�, we consider instead of Eq. �6�

g�Xf� � − 4Xf
3 − ��kf − 4�Xf = 
 A . �8�

The dashed curve in Fig. 2 represents Z��kf� from Eq. �8�.
Obviously, it is similar to the solid line from Eq. �6�. Figure
5 shows graphically how the amplitude of oscillation
changes with �kf for A=0.8, where the solid curve represents
y=g�X�, the dashed lines y= 
A, the bold arrow the oscilla-
tion amplitude, and �a�–�d� denote the cases �kf =0, 4
−3A2/3, 1.8, and 3.6, respectively, where 4−3A2/3 represents

FIG. 3. �Color online� Amax �solid curve� and Amin �dashed
curve� versus �kf for A=0.8. The approximation Amax��kf�=0.8 and
Amin��kf�=−0.8 changes Eq. �6� into Eq. �8�.

FIG. 4. �Color online� How the oscillation amplitude Z��kf�
depends on the parameter �kf with A=0.8, based on Eq. �6�, where
the solid curve represents y=g�X�, the dashed lines y=−Amax,min,
and the bold arrow the oscillation amplitude Z��kf�. �a�–�d� denote
the cases �kf =1, 1.72, 1.722, and 4, respectively.

FIG. 5. �Color online� How the oscillation amplitude depends
on the parameter �kf with A=0.8 in the framework of Eq. �8�,
where the solid curve represents y=g�X�, the dashed lines y= 
A,
and the bold arrow the oscillation amplitude. �a�–�d� denote the
cases �kf =0, 4−3A2/3, 1.8, and 3.6, respectively.
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a critical value �kf
c, whose derivation will be given below in

Eq. �10�.
Different from the results from Eq. �6�, here the amplitude

of oscillation decreases monotonously with �kf for �kf
��kf

c�4−3A2/3, see Fig. 2 �dashed curve�. In Fig. 5�a�, we
observe that there are 6 solutions to Eq. �8�. From a physical
ground there are two oscillatory motion, one around +1 and
the other around −1, both with small amplitude 2af indicated
by a line with arrows on the x axis. As �kf increases af also
increases slowly and at the critical point �kf

c=4−3A2/3, Xf
experiences a finite jump, see Fig. 5�b�.

kf
c can be determined from Eq. �8� as follows. We define

X� �see Fig. 5�b��, where two curves y=g�X� and y=A are
tangent each other. From dg�X� /dX �X� =0 we have

X� = �4 − �kf
c�/12. �9�

Since g�X��=A we obtain an important result

�kf
c = 4 − 3A2/3, kL��,A� = kf

c = �4 − 3A2/3�/� , �10�

where kL denotes the degree of the node of maximum ampli-
tude aL.

The value of aL is readily determined as follows. From
Fig. 5�b�, g�X+�=−A and we obtain X+=A1/3. That is, our unit
performs large amplitude oscillation between 
X+= 
A1/3,
with 
X+ denoting the nondegenerate solutions to Eq. �8� at
�kf =�kf

c and this realizes the maximum amplitude

aL = X+ = A1/3, G = aL/A = A−2/3. �11�

When �kf is further increased Xf now starts to decrease from
the value in Eq. �11�.

As the SF network has a broadly distributed degree k, Eq.
�3�, we can find a node with k=kL for a wide range of �. This
result is meaningful because it tells us that the signal re-
sponse can be amplified for a wide range of coupling
strength �, which is necessary and significant for the appli-
cation of a signal device. On the other hand, for very small �
it happens that we can find no node with the degree kL, Eq.
�10�, for a finite system and here effects of finite size of the
system come into play. This point will be considered later.

To check the validity of the prediction Eq. �10�, we do
numerical simulations to obtain experimentally G and kL, by
first constructing 100 different SF networks and then provid-
ing them with randomly chosen initial configurations 	xi�t
=0�= 
1
 for each �. Thus we obtain 100 kL for each �,
based on which we calculate the average �kL� and its stan-
dard deviation �kL=��kL− �kL��2�.

We plot �kL� and its error bar �i.e., standard deviation� as
a function of the coupling strength � in Fig. 6, where the
solid curve is obtained from Eq. �10�. Figure 6�a� denotes the
case N=500 and Fig. 6�b� the case N=2000. From Figs. 6�a�
and 6�b� it is easy to see that the theoretical curves are well
confirmed by the numerical simulations except the small �
region, and their consistence in Fig. 6�b� with larger size is
better than that in Fig. 6�a� with smaller size. Their inconsis-
tence in the small � region comes from the finite size effect,
which will be discussed in the next section.

The agreement between experiments and theory achieved
for kL in Fig. 6 gives already a support to our fifty-fifty
assumption. As a more direct check on this assumption, we
calculated the ratio

r =
n+

n−
, �12�

where n+ �n−� denotes the number of the neighbors which
oscillate around +1�−1�. It turned out that most of the r from
our experiments are around unity, confirming the fifty-fifty
assumption.

III. GAIN FOR THE WHOLE COUPLING RANGE

For a concrete network, an interesting question would be
how its gain changes with the coupling strength �. To answer
this question, we divided the coupling range into three re-
gions. The first region is 0	�	�1 with �1 satisfying
�1kmax=4−3A2/3, where kmax denotes the largest degree of
the concrete network at hand. The second region is �1	�
	�2 with �2 being the point when the whole system begins
to be synchronized. In the third region ���2 all the units
oscillate with the same phase in the same well �
1� as the
input signal A sin��t�. From the above discussions our
theory predicts that the gain for the second region is given by
the formula Eq. �11�, i.e., G=A−2/3. Thus, in the following
we will mainly focus on the first and third regions.

For the first region with 0	�	�1, no unit has a large
enough degree k to satisfy the relation Eq. �10� for kL, which
is revealed as the finite size effect in Fig. 6. Thus, all the
units oscillate around their equilibriums, i.e., �
1. For a
fixed coupling strength �, the maximum amplitude of oscil-
lation is expected to occur on the fifty-fifty unit. Let us put kf
here be kmax. From Eq. �5� we easily obtain its solution

FIG. 6. �Color online� The average �kL� and the standard devia-
tion �kL of the degree of the unit L with maximum amplitude are
shown by a circle and a bar as a function of �, respectively. The
solid curve is obtained from Eq. �10�. �a� is for the case N=500 and
�b� for the case N=2000. In simulations, we evaluated 100 kL for
each �, which are used to calculate �kL� and �kl.
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xf = x0 + x1�t� , �13�

where x0= 
4−�kmax

4 is the equilibrium solution of Eq. �5�
when there is no external force, and x1�t� is a linear response
solution

x1 = −
A

4�4 − �kmax�2 + �2 �� cos �t − 2�4 − �kmax�sin �t� .

�14�

From ẋf =0 we can determine both Xmax and Xmin and obtain
the gain G��Xmax−Xmin� / �2A� to be

G =
1

4�4 − �kmax�2 + �2
. �15�

As �kmax	4−3A2/3 in this region, the gain G will be small
value and slowly increase from 1 /64+�2 to 1 /36A4/3+�2

when � increases from 0 to �1.
For the third region with ���2, the dynamics is fully

synchronized, xi�t�=x�t��i=1,2 , . . ,N�. The Eq. �1� is re-
duced to

ẋ = − 4x3 + 4x + A sin��t� . �16�

Following the same argumentation employed to have Eq. �8�
from Eq. �5�, we have from Eq. �16�

− 4X3 + 4X = 
 A . �17�

Denoting the solutions for 
A in Eq. �17� as Xmax and Xmin,
respectively, we have asynch= �Xmax−Xmin� /2, and thus
Gsynch=asynch /A is independent of � in this region. The so-
lution to Eq. �17� can be also easily obtained graphically
from Fig. 2 ��=0�.

We have thus obtained the gain G for the whole range of
coupling strength �. For confirming it, we performed nu-
merical simulations on a SF network with N=2000. Figure 7
shows the result for A=0.4 �squares�, A=0.8 �circles�, and
A=1.2 �triangles�.

In the first region 0	�	�1, we determine �1 from our
theory �1= �4−3A2/3� /kmax and the data kmax�107 to be �1
=0.022, 0.013 and 0.006 for A=0.4, 0.8, and 1.2, respec-
tively. The gain G from Eq. �15� is plotted in the first region
in Fig. 7�solid curves�.

In the third region ���2, Eq. �17� is solved by the
Newton-Raphson method �10� to obtain G=0.126, 0.131,
and 0.141 for A=0.4, 0.8, and 1.2, respectively. As for �2 we
have no reliable theory at the moment and they are deter-
mined from our numerical experiments as �2=0.318, 0.205,
and 0.130 for A=0.4, 0.8, and 1.2, respectively.

At this point we give two comments on dynamics in the
third region. First, in the synchronization processes we found
from numerical experiments that nodes with large degree
rather easily synchronize in the final attractive well �1 or −1�,
in contrast to nodes with small degree, which resist being
attracted to the final well. Thus as a simple estimation of �2
we may put kL=5�7� in Eq. �10� to have �2=0.47�0.34�,
0.28�0.20�, and 0.12�0.09� for A=0.4, 0.8, and 1.2, respec-
tively. The estimation above based on the picture that syn-
chronization as a whole starts when the most resistive unit
synchronizes turns out to give at least qualitative prediction
of �2.

Second, it is noted that for ��0.3�A=0.4�, G from ex-
periments are observed to be larger than Gsynch. Instead of
attracted to the state of entirely synchronized state, the sys-
tem seems to be trapped in a �meta�stable state, in which
small number of units are oscillating in the well 1�−1� while
all others in the well −1�1�. For A=1.2 we observe no trace
of metastability. To understand this phenomenon, we calcu-
lated kL at �=�2 from Eq. �10� and obtain kL�7.6, 6.8 and
4.7 for A=0.4, 0.8, and 1.2, respectively. This is in accord
with the fact that when kL is relatively large it is easier to find
some node with k=kL �see Eq. �3��. From Fig. 6 it may be
said that experimental results are reproduced by our simple
one-body theory rather well.

IV. DISCUSSIONS AND CONCLUSIONS

Different from the approach in �7�, in this paper we de-
veloped a one-body theory for amplified signal response in a
scale-free network. The concept of fifty-fifty unit made it
possible to derive analytic forms for the gain, which consists
of three approximate platforms. The existence of the middle
platform shows that the SF network has the ability to amplify
signal response in a broad range of coupling strength. More-
over, we reveal that the degree kL for the maximum amplifi-
cation is inversely proportional to the coupling strength �
and can be figured out by Eq. �10�. All these results have
been well confirmed by numerical simulations.
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FIG. 7. �Color online� The gain G as a function of the coupling
strength � for a SF network with N=2000 and �k�=6. From top,
A=0.4, 0.8, and 1.2. Values of the gain in the middle “plateau”
region are from the theory, Eq. �11�, to be 1.84, 1.16, and 0.88,
respectively for A=0.4, 0.8, and A=1.2 in good agreement with
experiments.
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